The application of Machine Learning (ML) techniques to the well-known intrusion detection systems (IDS) is key to cope with increasingly sophisticated cybersecurity attacks through an effective and efficient detection process. In the context of the Internet of Things (IoT), most ML-enabled IDS approaches use centralized approaches where IoT devices share their data with data centers for further analysis. To mitigate privacy concerns associated with centralized approaches, in recent years the use of Federated Learning (FL) has attracted a significant interest in different sectors, including healthcare and transport systems. However, the development of FL-enabled IDS for IoT is in its infancy, and still requires research efforts from various areas, in order to identify the main challenges for the deployment in real-world scenarios. In this direction, our work evaluates a FL-enabled IDS approach based on a multiclass classifier considering different data distributions for the detection of different attacks in an IoT scenario. In particular, we use three different settings that are obtained by partitioning the recent ToN\_IoT dataset according to IoT devices' IP address and types of attack. Furthermore, we evaluate the impact of different aggregation functions according to such setting by using the recent IBMFL framework as FL implementation. Additionally, we identify a set of challenges and future directions based on the existing literature and the analysis of our evaluation results.


翻译:机械学习(ML)技术应用于众所周知的入侵探测系统(IDS)是应对日益复杂的网络安全攻击的关键。在物联网(IoT)方面,大多数由ML带动的ISDS方法采用集中方法,即IoT设备与数据中心共享数据以便进一步分析。为了减轻与集中方法有关的隐私问题,近年来,使用Falde Learning(FL)吸引了不同部门的极大兴趣,包括保健和运输系统。然而,FL带动的IoT软件数据集的开发尚处于初级阶段,仍需要各领域的研究工作,以便确定在现实世界情景中部署的主要挑战。在这方面,我们的工作根据一个多级分类分类分类分析器评价FL带动的ISDS方法,以考虑在IoT情景中不同袭击的探测数据分布。特别是,我们使用三种不同的环境,通过根据IoT设备IP地址和攻击类型对最近的IP地址和类型进行分解而获得的Toó数据集,这需要从各个领域中开展研究,以便确定在现实世界情景中部署的主要挑战。此外,我们的工作根据一个多级分类分类分类分类分析方法,根据我们现有的FBML分析结果来确定了目前执行结果。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
20+阅读 · 2020年6月8日
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
24+阅读 · 2020年3月11日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
Arxiv
20+阅读 · 2020年6月8日
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
24+阅读 · 2020年3月11日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Top
微信扫码咨询专知VIP会员