The system design and algorithm development of mobile 3D printing robots need a realistic simulation. They require a mobile robot simulation platform to interoperate with a physics-based material simulation for handling interactions between the time-variant deformable 3D printing materials and other simulated rigid bodies in the environment, which is not available for roboticists yet. To bridge this gap and enable the real-time simulation of mobile 3D printing processes, we develop a simulation framework that includes particle-based viscoelastic fluid simulation and particle-to-mesh conversion in the widely adopted Gazebo robotics simulator, avoiding the bottlenecks of traditional additive manufacturing simulation approaches. This framework is the first of its kind that enables the simulation of robot arms or mobile manipulators together with viscoelastic fluids. The method is tested using various material properties and multiple collaborating robots to demonstrate its simulation ability for the robots to plan and control the printhead trajectories and to visually sense at the same time the printed fluid materials as a free-form mesh. The scalability as a function of available material particles in the simulation was also studied. A simulation with an average of 5 FPS was achieved on a regular desktop computer.


翻译:移动 3D 打印机器人的系统设计和算法开发需要现实的模拟。 它们需要一个移动机器人模拟平台, 与基于物理的材料模拟平台进行互动, 以便处理时间变异的 3D 打印材料和其他模拟硬体在环境中的相互作用, 机器人目前还不具备这种模拟材料。 为了弥补这一差距, 并能够实时模拟移动 3D 打印过程, 我们开发了一个模拟框架, 其中包括基于粒子的粘凝液模拟器和在广泛采用 Gazebo 机器人模拟器中的微粒到微粒转换, 避免传统添加剂制造模拟方法的瓶颈。 这个框架是第一个能够模拟机器人武器或移动操纵器与粘结液之间相互作用的框架。 该方法使用各种材料属性和多个协作机器人进行测试, 以展示机器人的模拟能力, 以规划和控制打印头的轨迹, 并同时显示印刷液材料与自由成型网块的视觉感。 还在模拟中实现了可用材料微粒子的可变性功能。 在普通的计算机上实现了一个模拟。

0
下载
关闭预览

相关内容

机器人(英语:Robot)包括一切模拟人类行为或思想与模拟其他生物的机械(如机器狗,机器猫等)。狭义上对机器人的定义还有很多分类法及争议,有些电脑程序甚至也被称为机器人。在当代工业中,机器人指能自动运行任务的人造机器设备,用以取代或协助人类工作,一般会是机电设备,由计算机程序或是电子电路控制。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
使用 MPI for Python 并行化遗传算法
Python开发者
5+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
4+阅读 · 2018年1月19日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
使用 MPI for Python 并行化遗传算法
Python开发者
5+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员