Reliably determining system trajectories is essential in many analysis and control design approaches. To this end, an initial value problem has to be usually solved via numerical algorithms which rely on a certain software realization. Because software realizations can be error-prone, proof assistants may be used to verify the underlying mathematical concepts and corresponding algorithms. In this work we present a computer-certified formalization of the solution of the initial value problem of ordinary differential equations. The concepts are performed in the framework of constructive analysis and the proofs are written in the \texttt{Minlog} proof system. We show the extraction of a program, which solves an ODE numerically and provide some possible optimization regarding the efficiency. Finally, we provide numerical experiments to demonstrate how programs of a certain high level of abstraction can be obtained efficiently. The presented concepts may also be viewed as a part of preliminary work for the development of formalized nonlinear control theory, hence offering the possibility of computer-assisted controller design and program extraction for the controller implementation.
翻译:可靠地确定系统轨迹在许多分析和控制设计方法中至关重要。 为此, 最初的值问题通常必须通过依靠某种软件实现的数值算法来解决。 由于软件的实现可能容易出错, 可以使用证据助理来核查基本的数学概念和相应的算法。 在这项工作中, 我们提出了一个计算机认证的普通差异方程式初始值问题解决方案的正式化。 概念是在建设性分析的框架内进行的, 证明则在\ texttt{minlog} 验证系统中写成。 我们展示了程序提取过程, 它从数字上解析了 ODE, 并提供了效率方面的某些可能的优化。 最后, 我们提供了数字实验, 以证明如何有效地获得某种高水平的抽象化程序。 所提出的概念也可以被视为开发正规化的非线性控制理论的初步工作的一部分, 从而提供了计算机辅助控制器设计和程序提取用于控制器实施的可能性 。