Many of the data, particularly in medicine and disease mapping are count. Indeed, the under or overdispersion problem in count data distrusts the performance of the classical Poisson model. For taking into account this problem, in this paper, we introduce a new Bayesian structured additive regression model, called gamma count, with enough flexibility in modeling dispersion. Setting convenient prior distributions on the model parameters is a momentous issue in Bayesian statistics that characterize the nature of our uncertainty parameters. Relying on a recently proposed class of penalized complexity priors, motivated from a general set of construction principles, we derive the prior structure. The model can be formulated as a latent Gaussian model, and consequently, we can carry out the fast computation by using the integrated nested Laplace approximation method. We investigate the proposed methodology simulation study. Different expropriate prior distribution are examined to provide reasonable sensitivity analysis. To explain the applicability of the proposed model, we analyzed two real-world data sets related to the larynx mortality cancer in Germany and the handball champions league.
翻译:许多数据,特别是医学和疾病绘图中的数据都计算在内。事实上,计数数据的下位或过度分散问题不相信古典Poisson模型的性能。考虑到这一问题,我们在本文件中引入了一个新的巴伊西亚结构化的累进回归模型,称为伽马计数,在模型分散方面有足够的灵活性。在模型参数中设置方便的先前分布是巴伊西亚统计中的一个重大问题,该统计数据是我们不确定性参数性质的特点。根据最近提出的一组受处罚的复杂前科,根据一套总体建筑原则,我们得出了先前的结构。该模型可以形成一个隐性高斯模型,因此,我们可以使用综合的嵌巢拉普近似法进行快速计算。我们研究了拟议的方法模拟研究。对不同的先前分配进行了不同的分配,以提供合理的敏感性分析。为了解释拟议模型的适用性,我们分析了两个真实世界数据组与德国的喉道死亡率癌和手球冠军联盟有关。