Many of the data, particularly in medicine and disease mapping are count. Indeed, the under or overdispersion problem in count data distrusts the performance of the classical Poisson model. For taking into account this problem, in this paper, we introduce a new Bayesian structured additive regression model, called gamma count, with enough flexibility in modeling dispersion. Setting convenient prior distributions on the model parameters is a momentous issue in Bayesian statistics that characterize the nature of our uncertainty parameters. Relying on a recently proposed class of penalized complexity priors, motivated from a general set of construction principles, we derive the prior structure. The model can be formulated as a latent Gaussian model, and consequently, we can carry out the fast computation by using the integrated nested Laplace approximation method. We investigate the proposed methodology simulation study. Different expropriate prior distribution are examined to provide reasonable sensitivity analysis. To explain the applicability of the proposed model, we analyzed two real-world data sets related to the larynx mortality cancer in Germany and the handball champions league.


翻译:许多数据,特别是医学和疾病绘图中的数据都计算在内。事实上,计数数据的下位或过度分散问题不相信古典Poisson模型的性能。考虑到这一问题,我们在本文件中引入了一个新的巴伊西亚结构化的累进回归模型,称为伽马计数,在模型分散方面有足够的灵活性。在模型参数中设置方便的先前分布是巴伊西亚统计中的一个重大问题,该统计数据是我们不确定性参数性质的特点。根据最近提出的一组受处罚的复杂前科,根据一套总体建筑原则,我们得出了先前的结构。该模型可以形成一个隐性高斯模型,因此,我们可以使用综合的嵌巢拉普近似法进行快速计算。我们研究了拟议的方法模拟研究。对不同的先前分配进行了不同的分配,以提供合理的敏感性分析。为了解释拟议模型的适用性,我们分析了两个真实世界数据组与德国的喉道死亡率癌和手球冠军联盟有关。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
3+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月8日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
3+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员