We consider the two-player game chomp on posets associated to numerical semigroups and show that the analysis of strategies for chomp is strongly related to classical properties of semigroups. We characterize, which player has a winning-strategy for symmetric semigroups, semigroups of maximal embedding dimension and several families of numerical semigroups generated by arithmetic sequences. Furthermore, we show that which player wins on a given numerical semigroup is a decidable question. Finally, we extend several of our results to the more general setting of subsemigroups of $\mathbb{N} \times T$, where $T$ is a finite abelian group.
翻译:我们考虑与数字半组相关的双玩家游戏组合图案,并表明对曲组战略的分析与半组的典型特性密切相关。 我们的特性是,哪个玩家拥有对称半组、最大嵌入维度半组和数组半组等数组的赢取战略。 此外, 我们还显示,哪个玩家在某个特定数字半组中获胜是一个可分解的问题。 最后, 我们将我们的一些结果推广到一个更一般的 $\ mathb{N}\time T$ 子组设置, $T$是一个有限的ABelian 组。