The geometric problem of estimating an unknown compact convex set from evaluations of its support function arises in a range of scientific and engineering applications. Traditional approaches typically rely on estimators that minimize the error over all possible compact convex sets; in particular, these methods do not allow for the incorporation of prior structural information about the underlying set and the resulting estimates become increasingly more complicated to describe as the number of measurements available grows. We address both of these shortcomings by describing a framework for estimating tractably specified convex sets from support function evaluations. Building on the literature in convex optimization, our approach is based on estimators that minimize the error over structured families of convex sets that are specified as linear images of concisely described sets -- such as the simplex or the spectraplex -- in a higher-dimensional space that is not much larger than the ambient space. Convex sets parametrized in this manner are significant from a computational perspective as one can optimize linear functionals over such sets efficiently; they serve a different purpose in the inferential context of the present paper, namely, that of incorporating regularization in the reconstruction while still offering considerable expressive power. We provide a geometric characterization of the asymptotic behavior of our estimators, and our analysis relies on the property that certain sets which admit semialgebraic descriptions are Vapnik-Chervonenkis (VC) classes. Our numerical experiments highlight the utility of our framework over previous approaches in settings in which the measurements available are noisy or small in number as well as those in which the underlying set to be reconstructed is non-polyhedral.
翻译:在一系列科学和工程应用中,从对其支持功能的评估中估算出一个未知的缩压锥体的地貌问题出现在一系列科学和工程应用中。传统方法通常依赖于将所有可能的缩压锥体组的误差最小化的估测器;特别是,这些方法不允许在比环境空间大得多的较高空间纳入关于基础组的先前结构信息,由此得出的估计也越来越复杂。随着现有测量数量的增加,我们通过描述一个框架来估计从支持功能评估中可明显指定的缩压锥体组。在康韦克斯优化的文献中,我们的方法基于的估测器,即尽可能减少对结构组合结构组合的误差,这些组合是简明描述的组合的线性图像 -- -- 例如简单x或光谱,这些结构信息无法在比环境空间大得多的高度空间中纳入先前的结构信息。康韦克斯的组合从计算角度来说意义重大,因为一个人可以使支持功能比支持功能组更优化小的线性功能组。在本文的推论背景中,其目的是不同的,即,在重建过程中纳入常规化的配置,同时,而我们作为深度分析基础分析的精确分析基础,我们作为我们的某些直位分析的直位结构结构结构,我们作为我们的直系的直系的直系的直系,提供了。我们作为我们的直系的直系的直系的直系的直系的直系,我们作为我们的直系的直系的直系的直系的直系的直系的直系分析,我们提供了某种的直系的直系的直系的直系结构。我们作为我们的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系,我们作为我们的直系的直系的直系的直系的直系的直系的直系结构结构。我们提供。我们提供了的直系,我们提供。