Machine learning approached through supervised learning requires expensive annotation of data. This motivates weakly supervised learning, where data are annotated with incomplete yet discriminative information. In this paper, we focus on partial labelling, an instance of weak supervision where, from a given input, we are given a set of potential targets. We review a disambiguation principle to recover full supervision from weak supervision, and propose an empirical disambiguation algorithm. We prove exponential convergence rates of our algorithm under classical learnability assumptions, and we illustrate the usefulness of our method on practical examples.
翻译:通过有监督的学习进行机器学习需要花费昂贵的数据说明。 这鼓励了监督不力的学习,其中数据附加了不完整但歧视性的信息。 在本文中,我们侧重于部分标签,这是一个监督不力的例子,从特定的投入中,我们获得了一系列潜在目标。我们审视了从监督不力中恢复全面监督的脱钩原则,并提出了一种经验模糊的算法。我们在传统学习假设中证明了我们算法的指数趋同率,我们用实例来说明我们的方法的用处。