Human motion modeling is important for many modern graphics applications, which typically require professional skills. In order to remove the skill barriers for laymen, recent motion generation methods can directly generate human motions conditioned on natural languages. However, it remains challenging to achieve diverse and fine-grained motion generation with various text inputs. To address this problem, we propose MotionDiffuse, the first diffusion model-based text-driven motion generation framework, which demonstrates several desired properties over existing methods. 1) Probabilistic Mapping. Instead of a deterministic language-motion mapping, MotionDiffuse generates motions through a series of denoising steps in which variations are injected. 2) Realistic Synthesis. MotionDiffuse excels at modeling complicated data distribution and generating vivid motion sequences. 3) Multi-Level Manipulation. MotionDiffuse responds to fine-grained instructions on body parts, and arbitrary-length motion synthesis with time-varied text prompts. Our experiments show MotionDiffuse outperforms existing SoTA methods by convincing margins on text-driven motion generation and action-conditioned motion generation. A qualitative analysis further demonstrates MotionDiffuse's controllability for comprehensive motion generation. Homepage: https://mingyuan-zhang.github.io/projects/MotionDiffuse.html
翻译:人类运动模型对于许多现代图形应用十分重要,这些应用通常需要专业技能。为了消除外行人的技能障碍,最近的运动生成方法可以直接产生以自然语言为条件的人类运动。然而,用各种文字投入实现多样化和精细的动作生成仍然具有挑战性。为解决这一问题,我们提议采用以文字驱动的首次传播模型驱动的动作生成框架,即运动Diffuse,它展示了现有方法的几种期望特性。 (1) 概率映射。它不是用确定性的语言移动映射,而是通过一系列注入变异的分化步骤产生动作。(2) Realistic Asyn综合。运动在模拟复杂的数据分配和生成生动运动序列方面仍然很出色。(3) 多层次的调控。运动是响应以微缩式指令,以及任意的长动动作合成,提示了时间变异的文字。我们的实验显示运动Diffuse 超越了现有的 SoTA方法,方法是在文本驱动的生成和动作生成上说服边缘。(2) Realisticalimmedition Annation/HisimputiveDimation。 assimalalassing:motionDligistrings