This article concerns the predictive modeling for spatio-temporal data as well as model interpretation using data information in space and time. We develop a novel approach based on supervised dimension reduction for such data in order to capture nonlinear mean structures without requiring a prespecified parametric model. In addition to prediction as a common interest, this approach emphasizes the exploration of geometric information from the data. The method of Pairwise Directions Estimation (PDE; Lue, 2019) is implemented in our approach as a data-driven function searching for spatial patterns and temporal trends. The benefit of using geometric information from the method of PDE is highlighted, which aids effectively in exploring data structures. We further enhance PDE, referring to it as PDE+, by incorporating kriging to estimate the random effects not explained in the mean functions. Our proposal can not only increase prediction accuracy, but also improve the interpretation for modeling. Two simulation examples are conducted and comparisons are made with four existing methods. The results demonstrate that the proposed PDE+ method is very useful for exploring and interpreting the patterns and trends for spatio-temporal data. Illustrative applications to two real datasets are also presented.
翻译:本条涉及时空数据预测模型,以及利用空间和时间数据信息进行模型解释。我们根据对这些数据进行监督的尺寸减少,制定了一种新的方法,以获取非线性平均结构,而不需要事先指定的参数模型。除了作为共同利益的预测外,这一方法强调从数据中探索几何信息。对称方向估计方法(PDE;Lue,2019年)在我们的方法中作为数据驱动功能,用于寻找空间模式和时间趋势。我们突出强调了使用PDE方法的几何信息的好处,这有助于有效地探索数据结构。我们进一步加强PDE,称之为PDE+,将它称为PDE+,采用Krig来估计未在平均函数中解释的随机效应。我们的建议不仅可以提高预测准确性,而且还可以改进对模型的解释。进行了两个模拟示例,用四种现有方法进行了比较。结果表明,拟议的PDE+方法对于探索和解释spotio-时空数据的模式和趋势非常有用。还提出了两个实际数据模型。