Recently, pre-trained point cloud models have found extensive applications in downstream tasks like object classification. However, these tasks often require {full fine-tuning} of models and lead to storage-intensive procedures, thus limiting the real applications of pre-trained models. Inspired by the great success of visual prompt tuning (VPT) in vision, we attempt to explore prompt tuning, which serves as an efficient alternative to full fine-tuning for large-scale models, to point cloud pre-trained models to reduce storage costs. However, it is non-trivial to apply the traditional static VPT to point clouds, owing to the distribution diversity of point cloud data. For instance, the scanned point clouds exhibit various types of missing or noisy points. To address this issue, we propose an Instance-aware Dynamic Prompt Tuning (IDPT) for point cloud pre-trained models, which utilizes a prompt module to perceive the semantic prior features of each instance. This semantic prior facilitates the learning of unique prompts for each instance, thus enabling downstream tasks to robustly adapt to pre-trained point cloud models. Notably, extensive experiments conducted on downstream tasks demonstrate that IDPT outperforms full fine-tuning in most tasks with a mere 7\% of the trainable parameters, thus significantly reducing the storage pressure. Code is available at \url{https://github.com/zyh16143998882/IDPT}.


翻译:最近,预训练的点云模型在对象分类等下游任务中得到了广泛应用。然而,这些任务通常需要模型的完全微调,从而导致存储密集的程序,因此限制了预训练模型的实际应用。受视觉提示调整(VPT)在视觉领域的巨大成功的启发,我们尝试探索提示调整,作为大型模型的有效替代方案,减少点云预训练模型的存储成本。然而,由于点云数据分布的多样性,在点云中应用传统的静态VPT是非常棘手的。例如,扫描点云展示了各种类型的缺失或噪声点。为了解决这个问题,我们提出了一种针对点云预训练模型的实例感知动态提示调整(IDPT),利用提示模块来感知每个实例的语义先验特征。这种语义先验有助于学习每个实例的独特提示,从而使下游任务能够强健地适应预训练的点云模型。值得注意的是,对下游任务进行的大量实验表明,IDPT在大多数任务中优于完全微调,仅具备7%的可训练参数,从而显着减轻了存储压力。代码可在 \url{https://github.com/zyh16143998882/IDPT} 上找到。

1
下载
关闭预览

相关内容

【ICML2023】POUF:面向提示的大型预训练模型无监督微调
专知会员服务
36+阅读 · 2023年5月18日
专知会员服务
32+阅读 · 2021年7月27日
【NeurIPS2020-华为】DynaBERT:具有自适应宽度和深度的动态BERT
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
IJCAI 2022 | 使用陈述句进行视觉问答的Prompt Tuning
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】用于深度双目的非监督适应方法(ICCV-2017)
泡泡机器人SLAM
10+阅读 · 2018年10月7日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月27日
Arxiv
19+阅读 · 2021年6月15日
VIP会员
相关资讯
IJCAI 2022 | 使用陈述句进行视觉问答的Prompt Tuning
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】用于深度双目的非监督适应方法(ICCV-2017)
泡泡机器人SLAM
10+阅读 · 2018年10月7日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员