Suppose that the only available information in a multi-class problem are expert estimates of the conditional probabilities of occurrence for a set of binary features. The aim is to select a subset of features to be measured in subsequent data collection experiments. In the lack of any information about the dependencies between the features, we assume that all features are conditionally independent and hence choose the Naive Bayes classifier as the optimal classifier for the problem. Even in this (seemingly trivial) case of complete knowledge of the distributions, choosing an optimal feature subset is not straightforward. We discuss the properties and implementation details of Sequential Forward Selection (SFS) as a feature selection procedure for the current problem. A sensitivity analysis was carried out to investigate whether the same features are selected when the probabilities vary around the estimated values. The procedure is illustrated with a set of probability estimates for Scrapie in sheep.


翻译:假设一个多类问题中的唯一可用信息是一组二元特征的有条件发生概率的专家估计。目的是选择在随后的数据收集实验中测量的一系列特征。由于缺乏关于这些特征之间依赖性的任何信息,我们假设所有特征都是有条件独立的,因此选择Naive Bayes分类器作为问题的最佳分类器。即使在此(似乎微不足道的)完全了解分布的案例中,选择一个最佳特征子集并不简单。我们讨论了顺序前期选择的属性和执行细节,作为当前问题的特征选择程序。进行了敏感性分析,以调查在估计值的概率不同时是否选择了相同的特征。该程序用一套羊毛滑坡概率估算来说明。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】基于视频修复的时空转换网络
泡泡机器人SLAM
5+阅读 · 2018年12月30日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Single-frame Regularization for Temporally Stable CNNs
Learning to Importance Sample in Primary Sample Space
Arxiv
8+阅读 · 2018年5月1日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】基于视频修复的时空转换网络
泡泡机器人SLAM
5+阅读 · 2018年12月30日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员