In providing physical assistance to elderly people, ensuring cooperative behavior from the elderly persons is a critical requirement. In sit-to-stand assistance, for example, an older adult must lean forward, so that the body mass can shift towards the feet before a caregiver starts lifting the body. An experienced caregiver guides the older adult through verbal communications and physical interactions, so that the older adult may be cooperative throughout the process. This guidance is of paramount importance and is a major challenge in introducing a robotic aid to the eldercare environment. The wide-scope goal of the current work is to develop an intelligent eldercare robot that can a) monitor the mental state of an older adult, and b) guide the older adult through an assisting procedure so that he/she can be cooperative in being assisted. The current work presents a basic modeling framework for describing a human's physical behaviors reflecting an internal mental state, and an algorithm for estimating the mental state through interactive observations. The sit-to-stand assistance problem is considered for the initial study. A simple Kalman Filter is constructed for estimating the level of cooperativeness in response to applied cues, with a thresholding scheme being used to make judgments on the cooperativeness state.
翻译:在向老年人提供身体援助方面,确保老年人采取合作行为是一项关键要求。例如,在就坐式援助中,年长者必须往前倾斜,以便身体质量能够在照料者开始抬起身体之前向脚移动。有经验的照料者通过口头交流和身体互动指导老年人,以便老年人在整个过程中进行合作。这一指导至关重要,也是向老年人护理环境引进机器人援助的一大挑战。目前工作的广泛目标是开发智能老年人护理机器人,该机器人能够(a) 监测老年人的精神状态,(b) 通过协助程序指导老年人,以便他/她能够合作接受援助。目前的工作为描述反映内部精神状态的人类身体行为提供了一个基本的模型框架,为通过互动观察估计精神状态提供了一个算法。初步研究将考虑静坐式援助问题。一个简单的卡尔曼过滤器,用来评估在应用提示时的合作程度,并使用一个临界方法对合作状态做出判断。