Neural architecture search (NAS) methods aim to automatically find the optimal deep neural network (DNN) architecture as measured by a given objective function, typically some combination of task accuracy and inference efficiency. For many areas, such as computer vision and natural language processing, this is a critical, yet still time consuming process. New NAS methods have recently made progress in improving the efficiency of this process. We implement an extensible and modular framework for Differentiable Neural Architecture Search (DNAS) to help solve this problem. We include an overview of the major components of our codebase and how they interact, as well as a section on implementing extensions to it (including a sample), in order to help users adopt our framework for their applications across different categories of deep learning models. To assess the capabilities of our methodology and implementation, we apply DNAS to the problem of ads click-through rate (CTR) prediction, arguably the highest-value and most worked on AI problem at hyperscalers today. We develop and tailor novel search spaces to a Deep Learning Recommendation Model (DLRM) backbone for CTR prediction, and report state-of-the-art results on the Criteo Kaggle CTR prediction dataset.
翻译:神经结构搜索(NAS)方法旨在自动找到以特定目标功能衡量的最优化深神经网络(DNN)结构(DNN)结构,这种结构一般是任务准确性和推断效率的某种组合。对于许多领域,例如计算机视觉和自然语言处理,这是一个关键但仍然耗时的过程。新的NAS方法最近在提高这个过程的效率方面取得了进展。我们为不同的神经结构搜索(DNAS)实施了一个可扩展和模块化的框架,以帮助解决这一问题。我们包括了对我们代码库的主要组成部分及其互动方式的概览,以及关于实施扩展的一节(包括样本),以便帮助用户在不同类别的深层次学习模型中采用我们的应用框架。为了评估我们的方法和执行能力,我们应用DNAS来应对广告点击率(CTR)预测问题,可以说是当今超尺度中最高值和在AI问题上工作最多的。我们开发并调整了新搜索空间,以建立深学习建议模型(DLRM)的主干线,用于CTR预测,并报告CTR-Art的状态预测结果。