Large Language Models (LLMs) remain static in functionality after training, and extending their capabilities requires integration with external data, computation, and services. The Model Context Protocol (MCP) has emerged as a standard interface for such extensions, but current implementations rely solely on semantic matching between users' requests and server function descriptions, which makes current deployments and simulation testbeds fragile under latency fluctuations or server failures. We address this gap by enhancing MCP tool routing algorithms with real-time awareness of network and server status. To provide a controlled test environment for development and evaluation, we construct a heterogeneous experimental platform, namely Network-aware MCP (NetMCP), which offers five representative network states and build a benchmark for latency sequence generation and MCP server datasets. On top of NetMCP platform, we analyze latency sequences and propose a Semantic-Oriented and Network-Aware Routing (SONAR) algorithm, which jointly optimizes semantic similarity and network Quality of Service (QoS) metrics for adaptive tool routing. Results show that SONAR consistently improves task success rate and reduces completion time and failure number compared with semantic-only, LLM-based baselines, demonstrating the value of network-aware design for production-scale LLM systems. The code for NetMCP is available at https://github.com/NICE-HKU/NetMCP.


翻译:大型语言模型(LLM)在训练后功能保持静态,扩展其能力需要与外部数据、计算和服务进行集成。模型上下文协议(MCP)已成为此类扩展的标准接口,但现有实现仅依赖于用户请求与服务器功能描述之间的语义匹配,这导致当前部署和模拟测试平台在延迟波动或服务器故障时表现脆弱。我们通过增强MCP工具路由算法,使其具备对网络和服务器状态的实时感知能力,以弥补这一不足。为提供一个可控的开发与评估测试环境,我们构建了一个异构实验平台——网络感知MCP(NetMCP),该平台提供五种代表性网络状态,并构建了用于延迟序列生成和MCP服务器数据集的基准。在NetMCP平台之上,我们分析了延迟序列,并提出了一种语义导向与网络感知路由(SONAR)算法,该算法联合优化语义相似度和网络服务质量(QoS)指标,以实现自适应工具路由。实验结果表明,与仅基于语义的基线方法和基于LLM的基线方法相比,SONAR算法持续提高了任务成功率,并减少了完成时间和失败次数,这证明了网络感知设计对于生产级LLM系统的价值。NetMCP的代码可在 https://github.com/NICE-HKU/NetMCP 获取。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员