Every sound that we hear is the result of successive convolutional operations (e.g. room acoustics, microphone characteristics, resonant properties of the instrument itself, not to mention characteristics and limitations of the sound reproduction system). In this work we seek to determine the best room in which to perform a particular piece using AI. Additionally, we use room acoustics as a way to enhance the perceptual qualities of a given sound. Historically, rooms (particularly Churches and concert halls) were designed to host and serve specific musical functions. In some cases the architectural acoustical qualities enhanced the music performed there. We try to mimic this, as a first step, by designating room impulse responses that would correlate to producing enhanced sound quality for particular music. A convolutional architecture is first trained to take in an audio sample and mimic the ratings of experts with about 78 % accuracy for various instrument families and notes for perceptual qualities. This gives us a scoring function for any audio sample which can rate the perceptual pleasantness of a note automatically. Now, via a library of about 60,000 synthetic impulse responses mimicking all kinds of room, materials, etc, we use a simple convolution operation, to transform the sound as if it was played in a particular room. The perceptual evaluator is used to rank the musical sounds, and yield the "best room or the concert hall" to play a sound. As a byproduct it can also use room acoustics to turn a poor quality sound into a "good" sound.


翻译:我们听到的每一个声音都是连续的进化操作的结果(例如,室内声响、麦克声特点、仪器本身的共振特性,更不用说音效复制系统的特性和局限性)。在这项工作中,我们力求确定使用AI进行某个特定作品的最佳房间。此外,我们用室声学作为提高特定声音感知品质的一种方法。从历史上看,房间(特别是教堂和音乐厅)的设计是用来容纳和提供特定的音乐功能的。在某些情况下,建筑声学质量提高了音乐。作为第一步,我们试图模仿这一点,我们试图指定与提高特定音乐的音质相关的室脉冲反应。在这个工作中,我们寻求确定最合适的房间,以便用AI来进行音频抽样,并模拟专家的评级,使各乐器家庭达到78 % 的准确度, 并记录感知性品质。这给了我们一个评分功能, 任何能够自动评估音调的感知的令人愉快的音调。现在,我们通过一个约60,000个合成的脉冲反应图书馆,将所有类型的房间,材料,等等,指定与制作提高特定音质质量的音质质量的室。我们使用一个音调的音调的动作,把音质评估的音调的音调的音调, 用于制的音调的音调的音调的音调的音调的音调, 用于制成的音调的音调的音调的音调的音调的音调的音调的音调的音调的音调的音调的音调的音调的音调的音。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月30日
Arxiv
0+阅读 · 2022年9月30日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员