Ride-hailing demand prediction is an essential task in spatial-temporal data mining. Accurate Ride-hailing demand prediction can help to pre-allocate resources, improve vehicle utilization and user experiences. Graph Convolutional Networks (GCN) is commonly used to model the complicated irregular non-Euclidean spatial correlations. However, existing GCN-based ride-hailing demand prediction methods only assign the same importance to different neighbor regions, and maintain a fixed graph structure with static spatial relationships throughout the timeline when extracting the irregular non-Euclidean spatial correlations. In this paper, we propose the Spatial-Temporal Dynamic Graph Attention Network (STDGAT), a novel ride-hailing demand prediction method. Based on the attention mechanism of GAT, STDGAT extracts different pair-wise correlations to achieve the adaptive importance allocation for different neighbor regions. Moreover, in STDGAT, we design a novel time-specific commuting-based graph attention mode to construct a dynamic graph structure for capturing the dynamic time-specific spatial relationships throughout the timeline. Extensive experiments are conducted on a real-world ride-hailing demand dataset, and the experimental results demonstrate the significant improvement of our method on three evaluation metrics RMSE, MAPE and MAE over state-of-the-art baselines.


翻译:在空间时空数据开采中,对需求进行乘机预测是一项至关重要的任务。准确的乘机需求预测有助于预先分配资源,改善车辆利用率和用户经验。图表革命网络(GCN)通常用于模拟复杂的非欧洲的异常空间相关关系。然而,现有的基于GCN的乘车需求预测方法对不同的邻国区域来说也具有同等重要性,并且在提取非欧洲的不规则空间相关时段时段时段时段时段保持固定的空间关系固定图形结构。在本文件中,我们提议采用空间-时动态图表关注网络(STDGAT),这是一个全新的载车需求预测方法。根据GAT的注意机制,STDGAT提取了不同的双向相关关系,以实现不同邻近地区的调适重要性分配。此外,在STDGAT中,我们设计了一个新的基于具体时间互换的图形关注模式,以建立一个动态图表结构,用以在整个时段期间捕捉动态的特定时间空间关系。我们进行了广泛的空间动态图表结构实验,这是一种全新的载车需求预测方法,这是在实际-世界马航基准上进行的重大实验,并展示了我们对马航基准数据进行的重大改进。

0
下载
关闭预览

相关内容

图注意力网络(Graph Attention Network,GAT),它通过注意力机制(Attention Mechanism)来对邻居节点做聚合操作,实现了对不同邻居权重的自适应分配,从而大大提高了图神经网络模型的表达能力。
专知会员服务
20+阅读 · 2021年4月2日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
一文读懂依存句法分析
AINLP
16+阅读 · 2019年4月28日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【泡泡一分钟】基于视频修复的时空转换网络
泡泡机器人SLAM
5+阅读 · 2018年12月30日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Arxiv
9+阅读 · 2018年2月4日
VIP会员
相关VIP内容
专知会员服务
20+阅读 · 2021年4月2日
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
一文读懂依存句法分析
AINLP
16+阅读 · 2019年4月28日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【泡泡一分钟】基于视频修复的时空转换网络
泡泡机器人SLAM
5+阅读 · 2018年12月30日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员