In 2008, Maday and Ronquist introduced an interesting new approach for the direct parallel-in-time (PinT) solution of time-dependent PDEs. The idea is to diagonalize the time stepping matrix, keeping the matrices for the space discretization unchanged, and then to solve all time steps in parallel. Since then, several variants appeared, and we call these closely related algorithms ParaDiag algorithms. ParaDiagalgorithms in the literature can be classified into two groups: ParaDiag-I: direct standalone solvers, ParaDiag-II: iterative solvers. We will explain the basic features of each group in this note. To have concrete examples, we will introduce ParaDiag-I and ParaDiag-II for the advection-diffusion equation. We will also introduce ParaDiag-II for the wave equation and an optimal control problem for the wave equation. We could have used the advection-diffusion equation as well to illustrate ParaDiag-II, but wave equations are known to cause problems for certain PinT algorithms and thus constitute an especially interesting example for which ParaDiag algorithms were tested. We show the main known theoretical results in each case, and also provide Matlab codes for testing. The goal of the Matlab codes is to help the interested reader understand the key features of the ParaDiag algorithms, without intention to be highly tuned for efficiency and/or low memory use. We also provide speedup measurements of ParaDiag algorithms for a 2D linear advection-diffusion equation. These results are obtained on the Tianhe-1 supercomputer in China and the SIUE Campus Cluster in the US and and we compare these results to the performance of parareal and MGRiT, two widely used PinT algorithms.


翻译:2008年, Maday 和 Ronquist 引入了一种有趣的新方法, 用于对基于时间的 PDE 进行直接平行测量( PinT ) 。 我们将在本说明中解释每个组的基本特征。 要用具体的例子, 我们将引入 Para Diag- I 和 Para Diag- II 来调整空间离散矩阵, 然后再同时解决所有时间步骤 。 从那以后, 出现了几个变量, 我们称之为这些密切相关的算法 ParaDigal 算法。 ParaDigalgorithms 可以分为两个组: Para Diag- I : 直接独立解算器, Para Diag- II: 迭代数解答器。 我们将会解释每个组的基本特征。 PaDiag- I 和 Para Diag- II 的解算法, 我们也可以使用调算法解算法来说明 PinT 的直线解算法和 Sali- dalational- realations 。

0
下载
关闭预览

相关内容

MATLAB 是 Matrix Laboratory 的缩写,是一款由美国 MathWorks 公司出品的商业数学软件。是一种适用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
系列教程GNN-algorithms之六:《多核卷积拓扑图—TAGCN》
专知会员服务
50+阅读 · 2020年8月8日
【Manning新书】现代Java实战,592页pdf
专知会员服务
100+阅读 · 2020年5月22日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Arxiv
0+阅读 · 2021年6月7日
Arxiv
0+阅读 · 2021年6月3日
Arxiv
92+阅读 · 2020年2月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Top
微信扫码咨询专知VIP会员