We introduce several geometric notions, including thick-thin decompositions and the width of a homology class, to the theory of persistent homology. These ideas provide geometric interpretations of persistence diagrams. Indeed, we give quantitative and geometric descriptions of the ``size'' or ``persistence'' of a homology class. As a case study, we analyze the power filtration on unweighted graphs, and provide explicit bounds for the life spans of homology classes in persistence diagrams in all dimensions.
翻译:我们引入了几个几何概念, 包括厚深分解和同族元素的宽度, 来应用持久性同族元素理论。 这些概念提供了持久性图表的几何解释。 事实上, 我们给出了同族元素类“ 大小” 或“ 持久性” 的定量和几何描述。 作为案例研究, 我们分析了未加权图表上的功率过滤, 并在所有层面的持久性图表中为同族元素的寿命提供了明确的界限 。