We consider prophet inequalities subject to feasibility constraints that are the intersection of $q$ matroids. The best-known algorithms achieve a $\Theta(q)$-approximation, even when restricted to instances that are the intersection of $q$ partition matroids, and with i.i.d.~Bernoulli random variables. The previous best-known lower bound is $\Theta(\sqrt{q})$ due to a simple construction of [Kleinberg-Weinberg STOC 2012] (which uses i.i.d.~Bernoulli random variables, and writes the construction as the intersection of partition matroids). We establish an improved lower bound of $q^{1/2+\Omega(1/\log \log q)}$ by writing the construction of [Kleinberg-Weinberg STOC 2012] as the intersection of asymptotically fewer partition matroids. We accomplish this via an improved upper bound on the product dimension of a graph with $p^p$ disjoint cliques of size $p$, using recent techniques developed in [Alon-Alweiss European Journal of Combinatorics 2020].
翻译:我们认为,先知的不平等受可行性制约,这种限制是合合金的机器人。最著名的算法实现了美元(q)美元(q)的配方,即使仅限于合合q美元分割型机器人和i.i.d.-Bernoulli随机变量的交点。我们之前最著名的下限是$(theta)(sqrt{qq})美元,原因是简单建造了[Kleinberg-Weinberg STOC 2012] (它使用i.d.d~Bernoulli随机变量,并将建筑写成分割型机器人的交点。我们用最近开发的2020年《欧洲金砖杂志》的混合技术,将美元1/2 ⁇ _Omega(1/log\log\log q}设定了一个更低的交点。