We study connections between distributed local algorithms, finitary factors of iid processes, and descriptive combinatorics in the context of regular trees. We extend the Borel determinacy technique of Marks coming from descriptive combinatorics and adapt it to the area of distributed computing. Using this technique, we prove deterministic distributed $\Omega(\log n)$-round lower bounds for problems from a natural class of homomorphism problems. Interestingly, these lower bounds seem beyond the current reach of the powerful round elimination technique responsible for all substantial locality lower bounds of the last years. Our key technical ingredient is a novel ID graph technique that we expect to be of independent interest. We prove that a local problem admits a Baire measurable coloring if and only if it admits a local algorithm with local complexity $O(\log n)$, extending the classification of Baire measurable colorings of Bernshteyn. A key ingredient of the proof is a new and simple characterization of local problems that can be solved in $O(\log n)$ rounds. We complement this result by showing separations between complexity classes from distributed computing, finitary factors, and descriptive combinatorics. Most notably, the class of problems that allow a distributed algorithm with sublogarithmic randomized local complexity is incomparable with the class of problems with a Borel solution. We hope that our treatment will help to view all three perspectives as part of a common theory of locality, in which we follow the insightful paper of [Bernshteyn -- arXiv 2004.04905].


翻译:我们研究分布式本地算法、固定过程的固定因素和常规树的描述性组合体之间的连接。 我们扩展了来自描述性组合式组合法的标记的波雷尔确定性技术, 并将其适应到分布式计算区域。 我们使用这一技术, 证明确定性分配了 $\ omega (\ log n) $- 圆轮下限, 解决自然的同质性问题。 有趣的是, 这些下限似乎超越了对过去几年中所有大量地点下界负责的强大回合消除技术的当前范围。 我们的关键技术成分是一种新型的 ID图学技术, 我们期待能够独立的兴趣。 我们证明, 本地问题可以接受 Baire 可测量的颜色, 只有当它承认当地复杂度为$O (\ log n) 的本地算法, 将Baire的可测量的颜色分类扩展为 Bernshsteyn。 证据的一个关键要素是对本地问题进行新的和简单化的描述性描述性描述性分析。 我们用Allical roupal colal orizal oral oral oral oral orization orization orization legal legal

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Arxiv
0+阅读 · 2021年7月26日
VIP会员
相关资讯
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Top
微信扫码咨询专知VIP会员