We present Low Distortion Local Eigenmaps (LDLE), a manifold learning technique which constructs a set of low distortion local views of a dataset in lower dimension and registers them to obtain a global embedding. The local views are constructed using the global eigenvectors of the graph Laplacian and are registered using Procrustes analysis. The choice of these eigenvectors may vary across the regions. In contrast to existing techniques, LDLE can embed closed and non-orientable manifolds into their intrinsic dimension by tearing them apart. It also provides gluing instruction on the boundary of the torn embedding to help identify the topology of the original manifold. Our experimental results will show that LDLE largely preserved distances up to a constant scale while other techniques produced higher distortion. We also demonstrate that LDLE produces high quality embeddings even when the data is noisy or sparse.
翻译:我们展示了低扭曲本地 Eigenmaps (LDLE), 这是一种多重学习技术, 构建了一套低偏差的低维数据集本地视图, 并注册了这些数据集以获得全球嵌入。 本地视图是使用 Laplacian 图形的全局源代码构建的, 并使用 procrustes 分析进行注册 。 这些源代码的选择可能因区域而异 。 与现有技术不同, LDLE 可以通过拆分它们, 将封闭和不适应的元件嵌入其内在维度。 它还在被撕破的嵌入的边界上提供插图, 以帮助识别原始元体的地形学 。 我们的实验结果将显示, LDLE 基本上保持距离, 直至恒定规模, 而其他技术则产生更高的扭曲值 。 我们还表明, LDLE 即使在数据很吵或稀少时, 也会产生高质量的嵌入 。