While halide perovskites attract significant academic attention, examples of at-scale industrial production are still sparse. In this perspective, we review practical challenges hindering the commercialization of halide perovskites, and discuss how machine-learning (ML) tools could help: (1) active-learning algorithms that blend institutional knowledge and human expertise could help stabilize and rapidly update baseline manufacturing processes; (2) ML-powered metrology, including computer imaging, could help narrow the performance gap between large- and small-area devices; and (3) inference methods could help accelerate root-cause analysis by reconciling multiple data streams and simulations, focusing research effort on areas with highest probability for improvement. We conclude that to satisfy many of these challenges, incremental -- not radical -- adaptations of existing ML and statistical methods are needed. We identify resources to help develop in-house data-science talent, and propose how industry-academic partnerships could help adapt "ready-now" ML tools to specific industry needs, further improve process control by revealing underlying mechanisms, and develop "gamechanger" discovery-oriented algorithms to better navigate vast materials combination spaces and the literature.
翻译:虽然卤化百草枯在学术上引起了重要的注意,但大规模工业生产的例子仍然很少。从这个角度,我们审查阻碍卤化百草枯商业化的实际挑战,并讨论机器学习工具如何可以帮助:(1) 将机构知识和人类专门知识相结合的积极学习算法可以帮助稳定并迅速更新基线制造过程;(2) 包括计算机成像在内的ML动力计量法可以帮助缩小大面积和小面积装置之间的性能差距;(3) 推论方法可以帮助通过协调多种数据流和模拟来加快根源分析,将研究重点放在最有可能改进的领域。我们的结论是,为了应对其中的许多挑战,需要对现有ML和统计方法进行渐进的 -- -- 而不是激进的 -- -- 调整。我们确定资源,帮助发展内部的数据科学人才,并提出工业-学术界伙伴关系如何能够帮助将ML工具“现今”适应具体的工业需要,通过披露基本机制进一步改进过程控制,并开发“变换者”的发现算法,以更好地导航大材料组合空间和文献。