The fixed parameter tractable (FPT) approach is a powerful tool in tackling computationally hard problems. In this paper, we link FPT results to classic artificial intelligence (AI) techniques to show how they complement each other. Specifically, we consider the workflow satisfiability problem (WSP) which asks whether there exists an assignment of authorised users to the steps in a workflow specification, subject to certain constraints on the assignment. It was shown by Cohen et al. (JAIR 2014) that WSP restricted to the class of user-independent constraints (UI), covering many practical cases, admits FPT algorithms, i.e. can be solved in time exponential only in the number of steps $k$ and polynomial in the number of users $n$. Since usually $k \ll n$ in WSP, such FPT algorithms are of great practical interest. We present a new interpretation of the FPT nature of the WSP with UI constraints giving a decomposition of the problem into two levels. Exploiting this two-level split, we develop a new FPT algorithm that is by many orders of magnitude faster than the previous state-of-the-art WSP algorithm and also has only polynomial-space complexity. We also introduce new pseudo-Boolean (PB) and Constraint Satisfaction (CSP) formulations of the WSP with UI constraints which efficiently exploit this new decomposition of the problem and raise the novel issue of how to use general-purpose solvers to tackle FPT problems in a fashion that meets FPT efficiency expectations. In our computational study, we investigate, for the first time, the phase transition (PT) properties of the WSP, under a model for generation of random instances. We show how PT studies can be extended, in a novel fashion, to support empirical evaluation of scaling of FPT algorithms.
翻译:固定参数可拉动( FPT) 方法是处理计算硬性问题的有力工具。 在本文中, 我们将 FPT 的结果与经典人工智能(AI) 技术联系起来, 以显示它们是如何互补的。 具体地说, 我们考虑工作流程可对比性问题( WSP ), 询问是否有授权用户被分配到工作流程规格中的步骤, 受任务的某些限制。 Cohen 等人( JAIR 2014 ) 显示, WSP 仅限于用户独立的限制类别( UI ), 涵盖许多实际案例, 接受 FPT 算法, 也就是说, 只能以时间指数指数的速度解决 FPT, 只能用美元和多级的 美元来显示用户的超额转换 。 由于WSP 的生成, 这种FPT 算法的模型性能是巨大的。 我们对UPFPT 限制可以分解到两个层次。 (我们理解了两个层次的分解, 我们开发新的FPT ), 我们开发了一个新的FPT算法, 也只能以许多程度的系统变速化 。