The main contribution of this paper is the introduction of a dynamic logic formalism for reasoning about information flow in composite quantum systems. This builds on our previous work on a complete quantum dynamic logic for single systems. Here we extend that work to a sound (but not necessarily complete) logic for composite systems, which brings together ideas from the quantum logic tradition with concepts from (dynamic) modal logic and from quantum computation. This Logic of Quantum Programs (LQP) is capable of expressing important features of quantum measurements and unitary evolutions of multi-partite states, as well as giving logical characterisations to various forms of entanglement (for example, the Bell states, the GHZ states etc.). We present a finitary syntax, a relational semantics and a sound proof system for this logic. As applications, we use our system to give formal correctness proofs for the Teleportation protocol and for a standard Quantum Secret Sharing protocol; a whole range of other quantum circuits and programs, including other well-known protocols (for example, superdense coding, entanglement swapping, logic-gate teleportation etc.), can be similarly verified using our logic.


翻译:本文的主要贡献是引入了动态逻辑形式主义来推理复合量子系统中的信息流动。 这以我们以前关于单一系统完整量子动态逻辑的工作为基础。 我们在此将这项工作扩展为合成系统的健全( 但不一定完整)逻辑, 将量子逻辑传统的概念与( 动态) 模式逻辑和量子计算的概念结合起来。 量子程序( LQP) 的逻辑能够表达量子测量和多方国家统一演进的重要特征, 并给各种形式的纠缠( 例如, 贝尔州、 GHZ 州等) 提供逻辑特征。 我们为这一逻辑提出一个有条纹的语法、 关系语义和健全的验证系统。 作为应用, 我们使用我们的系统为远程传输协议和标准的量子秘密共享协议提供正式的正确性证明; 一系列其他量子电路和程式, 包括其它广为人知的规程( 例如, 超调调调、 缠绕、 逻辑转换等), 使用我们的远程传输逻辑等进行类似核查。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
已删除
将门创投
4+阅读 · 2018年12月10日
Nature 一周论文导读 | 2018 年 5 月 24 日
科研圈
11+阅读 · 2018年5月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月27日
Arxiv
0+阅读 · 2021年11月26日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
3+阅读 · 2019年3月1日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
已删除
将门创投
4+阅读 · 2018年12月10日
Nature 一周论文导读 | 2018 年 5 月 24 日
科研圈
11+阅读 · 2018年5月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年11月27日
Arxiv
0+阅读 · 2021年11月26日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
3+阅读 · 2019年3月1日
Arxiv
4+阅读 · 2018年4月30日
Top
微信扫码咨询专知VIP会员