Graph neural network (GNN) is a powerful learning approach for graph-based recommender systems. Recently, GNNs integrated with contrastive learning have shown superior performance in recommendation with their data augmentation schemes, aiming at dealing with highly sparse data. Despite their success, most existing graph contrastive learning methods either perform stochastic augmentation (e.g., node/edge perturbation) on the user-item interaction graph, or rely on the heuristic-based augmentation techniques (e.g., user clustering) for generating contrastive views. We argue that these methods cannot well preserve the intrinsic semantic structures and are easily biased by the noise perturbation. In this paper, we propose a simple yet effective graph contrastive learning paradigm LightGCL that mitigates these issues impairing the generality and robustness of CL-based recommenders. Our model exclusively utilizes singular value decomposition for contrastive augmentation, which enables the unconstrained structural refinement with global collaborative relation modeling. Experiments conducted on several benchmark datasets demonstrate the significant improvement in performance of our model over the state-of-the-arts. Further analyses demonstrate the superiority of LightGCL's robustness against data sparsity and popularity bias. The source code of our model is available at https://github.com/HKUDS/LightGCL.


翻译:图形神经网络(GNN)是基于图形的建议系统的一种强有力的学习方法。 最近,与对比性学习相结合的GNNN在数据增强计划的建议中表现出优异性,目的是处理高度稀少的数据。尽管它们取得了成功,但大多数现有的图形对比性学习方法在用户-项目互动图中要么在用户-项目互动图中进行随机增强(例如节点/前置扰动),要么依靠基于超光速的增强技术(例如用户群)来生成对比性观点。我们争辩说,这些方法无法很好地保存内在的语义结构,很容易受到噪音的侵扰。我们在本文件中提出了简单而有效的图形对比性学习模式 LightGCL, 缓解这些问题损害基于 CL建议者的一般性和稳健性。我们的模型专门使用与对比性增强的单值分解定位,从而得以与全球协作关系模型进行不协调的结构性改进。在几个基准数据集上进行的实验表明,我们的模型在超越状态/图案设计时,很容易受到偏差的偏差性对比。 进一步分析我们基于SmaGC/MR的模型。

0
下载
关闭预览

相关内容

【KDD2022教程】图算法公平性:方法与趋势,200页ppt
专知会员服务
41+阅读 · 2022年8月20日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
NeurlPS2022推荐系统论文集锦
机器学习与推荐算法
1+阅读 · 2022年9月26日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
CIKM2020推荐系统论文集合
机器学习与推荐算法
10+阅读 · 2020年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月6日
Arxiv
10+阅读 · 2021年2月26日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
VIP会员
相关资讯
NeurlPS2022推荐系统论文集锦
机器学习与推荐算法
1+阅读 · 2022年9月26日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
CIKM2020推荐系统论文集合
机器学习与推荐算法
10+阅读 · 2020年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员