Spiking neurons can perform spatiotemporal feature detection by nonlinear synaptic and dendritic integration of presynaptic spike patterns. Multicompartment models of non-linear dendrites and related neuromorphic circuit designs enable faithful imitation of such dynamic integration processes, but these approaches are also associated with a relatively high computing cost or circuit size. Here, we investigate synaptic integration of spatiotemporal spike patterns with multiple dynamic synapses on point-neurons in the DYNAP-SE neuromorphic processor, which offers a complementary resource-efficient, albeit less flexible, approach to feature detection. We investigate how previously proposed excitatory--inhibitory pairs of dynamic synapses can be combined to integrate multiple inputs, and we generalize that concept to a case in which one inhibitory synapse is combined with multiple excitatory synapses. We characterize the resulting delayed excitatory postsynaptic potentials (EPSPs) by measuring and analyzing the membrane potentials of the neuromorphic neuronal circuits. We find that biologically relevant EPSP delays, with variability of order 10 milliseconds per neuron, can be realized in the proposed manner by selecting different synapse combinations, thanks to device mismatch. Based on these results, we demonstrate that a single point-neuron with dynamic synapses in the DYNAP-SE can respond selectively to presynaptic spikes with a particular spatiotemporal structure, which enables, for instance, visual feature tuning of single neurons.
翻译:斯piking神经元可以通过非线性神经突变和突变性突变模式对神经神经元特征进行突变性特征检测。 非线性线性突变和突变性突变性突变性模式的多重组合模型和相关的神经突变性电路设计能够忠实地模拟这种动态整合过程,但是这些方法也与相对较高的计算成本或电路大小相关联。在这里,我们调查了在DYNAP-SE神经变形处理器中点中点神经突变性突变模式与多个动态突变性突变性突变性突变的结合。DYNAP-SEPSP提供了一种补充性的资源效率,尽管不那么灵活,对特征检测是一种补充性的方法。我们调查了以前提出的非线性线性突变异性神经元及相关神经元电流的组合模型是如何结合的,我们通过测量和分析神经-变异性神经-变异性神经元结构的膜潜力,我们发现通过测试和分析神经-变异性神经-变异性神经元结构的细微变变变变变变变变变变变的。 我们发现,通过在的神经变性神经变变变变变变变变变变变变变变的神经结构中,可以以不同的变变变变变的神经变变变变变的变的变变变变变变变变变变的变的神经结构结构结构的变变变变变变变变的变的变方式向方式展示的变变变变变的。