Parameter learning for high-dimensional, partially observed, and nonlinear stochastic processes is a methodological challenge. Spatiotemporal disease transmission systems provide examples of such processes giving rise to open inference problems. We propose the iterated block particle filter (IBPF) algorithm for learning high-dimensional parameters over graphical state space models with general state spaces, measures, transition densities and graph structure. Theoretical performance guarantees are obtained on beating the curse of dimensionality (COD), algorithm convergence, and likelihood maximization. Experiments on a highly nonlinear and non-Gaussian spatiotemporal model for measles transmission reveal that the iterated ensemble Kalman filter algorithm (Li et al. (2020)) is ineffective and the iterated filtering algorithm (Ionides et al. (2015)) suffers from the COD, while our IBPF algorithm beats COD consistently across various experiments with different metrics.
翻译:高维、部分观测和非线性随机过程的参数学习是一个方法上的挑战。 Spatote-时间性疾病传播系统提供了导致公开推论问题的此类过程的例子。我们建议采用迭代区块粒子过滤器(IIPF)算法,以学习高维参数,而不是具有一般状态空间、测量、过渡密度和图形结构的图形国家空间模型。在战胜维度(COD)、算法趋同和可能性最大化的诅咒时,可以取得理论性能保障。在高非线性和非Gaussian的麻疹传播线性时间性模型上进行的实验显示,循环的共性卡尔曼过滤算法(Li等人(202020年))无效,而循环式过滤算法(Ionides等人(2015年))受COD的影响,而我们的IBPF算法则在不同指标的各种实验中一致地击败COD。