Change point detection is becoming increasingly popular in many application areas. On one hand, most of the theoretically-justified methods are investigated in an ideal setting without model violations, or merely robust against identical heavy-tailed noise distribution across time and/or against isolate outliers; on the other hand, we are aware that there have been exponentially growing attacks from adversaries, who may pose systematic contamination on data to purposely create spurious change points or disguise true change points. In light of the timely need for a change point detection method that is robust against adversaries, we start with, arguably, the simplest univariate mean change point detection problem. The adversarial attacks are formulated through the Huber $\varepsilon$-contamination framework, which in particular allows the contamination distributions to be different at each time point. In this paper, we demonstrate a phase transition phenomenon in change point detection. This detection boundary is a function of the contamination proportion $\varepsilon$ and is the first time shown in the literature. In addition, we derive the minimax-rate optimal localisation error rate, quantifying the cost of accuracy in terms of the contamination proportion. We propose a computationally feasible method, matching the minimax lower bound under certain conditions, saving for logarithmic factors. Extensive numerical experiments are conducted with comparisons to robust change point detection methods in the existing literature.


翻译:在许多应用领域,对变化点的探测越来越普遍。一方面,大多数理论上合理的方法都是在理想的环境下进行调查,没有示范违规现象,或者仅仅对相同的长时间和(或)隔绝的超速噪音分布进行严格调查;另一方面,我们意识到,对手的攻击成倍增长,他们可能对数据造成系统性污染,目的是制造虚假变化点或掩盖真正的变化点。鉴于及时需要一种对对手强有力的改变点探测方法,我们可以说,我们从简单、单一的改变点意味着检测问题开始。对抗性攻击是通过Huber $\varepsilon$- Contracting框架制定的,这特别使得污染分布在每个时间点都不同。在本文中,我们展示了变化点探测的阶段过渡现象。这种探测边界是污染比例$\varepslonon的函数,是文献中首次显示的。此外,我们从微量速最佳的本地化错误率开始,在污染度比例方面量化文献的准确性成本。我们提出了一种在微量度检测中进行精确的实验的方法。我们用一种可行的方法来比较。我们提出一种精确的数值比测测算。

0
下载
关闭预览

相关内容

专知会员服务
159+阅读 · 2020年1月16日
生成式对抗网络GAN异常检测
专知会员服务
114+阅读 · 2019年10月13日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
12+阅读 · 2019年4月9日
Arxiv
8+阅读 · 2019年2月15日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员