How should we compare the capabilities of language models (LMs) and humans? I draw inspiration from comparative psychology to highlight some challenges. In particular, I consider a case study: processing of recursively nested grammatical structures. Prior work suggests that LMs cannot handle these structures as reliably as humans can. However, the humans were provided with instructions and training, while the LMs were evaluated zero-shot. I therefore match the evaluation more closely. Providing large LMs with a simple prompt -- substantially less content than the human training -- allows the LMs to consistently outperform the human results, and even to extrapolate to more deeply nested conditions than were tested with humans. Further, reanalyzing the prior human data suggests that the humans may not perform above chance at the difficult structures initially. Thus, large LMs may indeed process recursively nested grammatical structures as reliably as humans. This case study highlights how discrepancies in the evaluation can confound comparisons of language models and humans. I therefore reflect on the broader challenge of comparing human and model capabilities, and highlight an important difference between evaluating cognitive models and foundation models.


翻译:我们应如何比较语言模型(LMS)和人类的能力?我应如何从比较心理学中汲取灵感,以突出一些挑战?我特别考虑一个案例研究:处理循环嵌套的语法结构。先前的工作表明,LMS无法象人类那样可靠地处理这些结构。然而,向人类提供了指示和培训,而LMS却被评估为零。因此,我更密切地匹配评估。向大型LMs提供简单的即时数据 -- -- 其内容远远少于人类培训的内容 -- -- 使LMs能够持续地超越人类结果,甚至外推到比人类所测试的更深的嵌套条件。此外,对以前的人类数据进行再分析表明,人类最初在困难的结构中可能不会超过机会。因此,大LMs的确可以像人类那样可靠地处理循环嵌套的语法结构。本案例研究强调,评价中的差异如何能混杂语言模型和人类的比较。我因此思考比较人与模型能力的更广泛挑战,并突出评估认知模型和基础模型之间的重要差异。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月27日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员