We present a general-purpose framework for image modelling and vision tasks based on probabilistic frame prediction. Our approach unifies a broad range of tasks, from image segmentation, to novel view synthesis and video interpolation. We pair this framework with an architecture we term Transframer, which uses U-Net and Transformer components to condition on annotated context frames, and outputs sequences of sparse, compressed image features. Transframer is the state-of-the-art on a variety of video generation benchmarks, is competitive with the strongest models on few-shot view synthesis, and can generate coherent 30 second videos from a single image without any explicit geometric information. A single generalist Transframer simultaneously produces promising results on 8 tasks, including semantic segmentation, image classification and optical flow prediction with no task-specific architectural components, demonstrating that multi-task computer vision can be tackled using probabilistic image models. Our approach can in principle be applied to a wide range of applications that require learning the conditional structure of annotated image-formatted data.
翻译:我们提出了一个基于概率框架预测的图像建模和愿景任务通用框架。我们的方法将一系列广泛的任务统一起来,从图像分割到新的视图合成和视频内插。我们把这个框架配以一个我们称为Transframer的架构,这个架构使用U-Net和变形器组件,以附加注释的上下文框架为条件,以及以分散、压缩图像特征的输出序列为条件。 Transframer是各种视频生成基准的最先进工艺,与最强的图像生成模型具有竞争力,在微小视图合成中与最强的模型具有竞争力,并且能够从一个单一图像中产生30秒的连续视频,而没有任何明确的几何信息。一个单一的通用 Transframer同时在8项任务上产生有希望的结果,包括语义分割、图像分类和光流预测,而没有具体任务的建筑组件,表明多任务计算机愿景可以使用概率图像模型来解决。我们的方法原则上可以应用于需要学习附加图成数据的有条件结构的广泛应用。