An elimination tree for a connected graph $G$ is a rooted tree on the vertices of $G$ obtained by choosing a root $x$ and recursing on the connected components of $G-x$ to produce the subtrees of $x$. Elimination trees appear in many guises in computer science and discrete mathematics, and they encode many interesting combinatorial objects, such as bitstrings, permutations and binary trees. We apply the recent Hartung-Hoang-M\"utze-Williams combinatorial generation framework to elimination trees, and prove that all elimination trees for a chordal graph $G$ can be generated by tree rotations using a simple greedy algorithm. This yields a short proof for the existence of Hamilton paths on graph associahedra of chordal graphs. Graph associahedra are a general class of high-dimensional polytopes introduced by Carr, Devadoss, and Postnikov, whose vertices correspond to elimination trees and whose edges correspond to tree rotations. As special cases of our results, we recover several classical Gray codes for bitstrings, permutations and binary trees, and we obtain a new Gray code for partial permutations. Our algorithm for generating all elimination trees for a chordal graph $G$ can be implemented in time $\mathcal{O}(m+n)$ per generated elimination tree, where $m$ and $n$ are the number of edges and vertices of $G$, respectively. If $G$ is a tree, we improve this to a loopless algorithm running in time $\mathcal{O}(1)$ per generated elimination tree. We also prove that our algorithm produces a Hamilton cycle on the graph associahedron of $G$, rather than just Hamilton path, if the graph $G$ is chordal and 2-connected. Moreover, our algorithm characterizes chordality, i.e., it computes a Hamilton path on the graph associahedron of $G$ if and only if $G$ is chordal.


翻译:连接的图形 $G$ 的消除树是一个根树 。 我们将最近的 Hartung- Hoang- M\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\G\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
已删除
将门创投
5+阅读 · 2019年9月10日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月1日
Arxiv
4+阅读 · 2021年7月1日
Arxiv
4+阅读 · 2018年1月15日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关资讯
已删除
将门创投
5+阅读 · 2019年9月10日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员