In this technical report, we describe the Royalflush submissions for the VoxCeleb Speaker Recognition Challenge 2022 (VoxSRC-22). Our submissions contain track 1, which is for supervised speaker verification and track 3, which is for semi-supervised speaker verification. For track 1, we develop a powerful U-Net-based speaker embedding extractor with a symmetric architecture. The proposed system achieves 2.06% in EER and 0.1293 in MinDCF on the validation set. Compared with the state-of-the-art ECAPA-TDNN, it obtains a relative improvement of 20.7% in EER and 22.70% in MinDCF. For track 3, we employ the joint training of source domain supervision and target domain self-supervision to get a speaker embedding extractor. The subsequent clustering process can obtain target domain pseudo-speaker labels. We adapt the speaker embedding extractor using all source and target domain data in a supervised manner, where it can fully leverage both domain information. Moreover, clustering and supervised domain adaptation can be repeated until the performance converges on the validation set. Our final submission is a fusion of 10 models and achieves 7.75% EER and 0.3517 MinDCF on the validation set.


翻译:在本技术报告中,我们描述了Royalflush提交VoxCeleb议长承认挑战2022(VoxSRC-22)。我们的呈件包含第1轨,用于监督演讲者核查,第3轨,用于半监督演讲者核查。第1轨,我们开发了强大的U-Net基演讲者嵌入提取器,并配有对称结构。拟议的系统在验证集中实现了2.06%的EER和0.1293的MinDCF。与最先进的ECAPA-TDNN相比,它相对改进了20.7%的EER和22.70%的MinDCF。关于第3轨,我们采用对源域监督的联合培训和目标域自我监督的联合培训,以获得发言者嵌入式。随后的组合进程可以获得目标域化伪发言人标签。我们用所有源和目标域数据对发言者嵌入的定位器进行了调整,从而能够充分利用域信息。此外,组合和监管的域适应可以重复到验证集集的性工作之前。我们的最后呈件是10个ER 0.175模型的MER 0.15和0.175的确认。

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
42+阅读 · 2022年6月30日
专知会员服务
123+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月23日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员