项目名称: 金属有机热载纳米流体的储能机理研究

项目编号: No.51506013

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 能源与动力工程

项目作者: 李期斌

作者单位: 重庆大学

项目金额: 21万元

中文摘要: 金属有机热载纳米流体具有独特的热能储集机制以及良好的热稳定性等优点,使其在低品位能源利用中具有巨大的潜力。但是对于金属有机热载纳米流体的储能机理研究,目前还处于起步阶段,纳米通道内流体的基本性质,材料参数以及环境温度对热能储集的影响还需系统地研究。用于预测和优化金属有机热载纳米流体性能的模型还有待开发。本项目将从原子尺度出发,采用实验手段和多尺度耦合模拟方法,其中包括从头计算法、分子模拟、原子-连续耦合方法、计算流体力学等多种计算方法。研究金属有机热载纳米流体的储能机理,明确金属有机热载纳米流体中热能与界面能的相互转化机制,探究金属有机热载纳米流体中能量传递机理,建立和优化金属有机热载纳米流体多尺度计算模型,为金属有机热载纳米流体在低品位能源中的利用提供指导。

中文关键词: 相变储能;纳米流体;金属有机骨架材料;有机工质;多尺度模拟

英文摘要: Metal-organic heat carrier nanofluids (MOHCs) has a great potential in the field of low-grade energy utilization because of its advantages, such as its unique thermal energy storage mechanism, fine thermostability and so on. However, the researches of the energy storage mechanism of MOHCs are still in its preliminary stage currently. The characteristics of fluid in the nanochannels, the parameters of materials and the ambient temperature have effects on energy storage, which need systematic study in the future. And the model used to predict and optimize the properties of MOHCs is to be established. This project starts from atomic level to macroscopic level and employs several multi-scale coupling simulations and experiments, including ab initio calculation, molecular simulation, and atomistic-continuum coupling method, and computational fluid mechanics and so on. This project aims to investigate the energy storage mechanism of MOHCs by investigating the transformation mechanism between thermal energy and interface energy in MOHCs, clarifying the energy transmission mechanism in MOHCs, and establishing and optimizing multi-scale model of MOHCs. Ultimately, this project can be used to provide guidance for the applications of MOHCs in the field of low-grade energy utilization.

英文关键词: Phase change energy storage;Nanofluid;Metal-organic frameworks;Organic working fluid;Multi-scale modeling

成为VIP会员查看完整内容
0

相关内容

全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
专知会员服务
48+阅读 · 2021年10月3日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
29+阅读 · 2021年8月16日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
《碳中和愿景下储能产业发展白皮书》27页ppt
专知会员服务
65+阅读 · 2021年3月30日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Synthesizing Informative Training Samples with GAN
Arxiv
0+阅读 · 2022年4月15日
小贴士
相关主题
相关VIP内容
全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
专知会员服务
48+阅读 · 2021年10月3日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
29+阅读 · 2021年8月16日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
《碳中和愿景下储能产业发展白皮书》27页ppt
专知会员服务
65+阅读 · 2021年3月30日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员