We derive optimal statistical decision rules for discrete choice problems when the decision maker is unable to discriminate among a set of payoff distributions. In this problem, the decision maker must confront both model uncertainty (about the identity of the true payoff distribution) and statistical uncertainty (the set of payoff distributions must be estimated). We derive "efficient-robust decision rules" which minimize maximum risk or regret over the set of payoff distributions and which use the data to learn efficiently about features of the set of payoff distributions germane to the choice problem. We discuss implementation of these decision rules via the bootstrap and Bayesian methods, for both parametric and semiparametric models. Using a limits of experiments framework, we show that efficient-robust decision rules are optimal and can dominate seemingly natural alternatives. We present applications to treatment assignment using observational data and optimal pricing in environments with rich unobserved heterogeneity.
翻译:当决策者无法区分一套报酬分配办法时,我们为离散的选择问题制定了最佳统计决策规则;在这一问题中,决策者必须既面对模型不确定性(关于真实报酬分配办法的身份),又面对统计不确定性(必须估算报酬分配办法的确定办法);我们制定“高效-野蛮决定规则”,最大限度地减少对报酬分配办法的最大风险或遗憾,并利用数据有效地了解报酬分配办法的特征,这与选择问题密切相关;我们通过靴套和巴伊西亚方法讨论这些决定规则的执行情况,包括准参数模型和半参数模型;我们利用试验框架的限度,表明高效-野蛮决定规则是最佳的,可以支配看似自然的替代办法;我们利用观察数据和最佳定价方法,在有大量未观察到的异质性的环境中进行治疗。