Semi-supervision in Machine Learning can be used in searches for new physics where the signal plus background regions are not labelled. This strongly reduces model dependency in the search for signals Beyond the Standard Model. This approach displays the drawback in that over-fitting can give rise to fake signals. Tossing toy Monte Carlo (MC) events can be used to estimate the corresponding trials factor through a frequentist inference. However, MC events that are based on full detector simulations are resource intensive. Generative Adversarial Networks (GANs) can be used to mimic MC generators. GANs are powerful generative models, but often suffer from training instability. We henceforth show a review of GANs. We advocate the use of Wasserstein GAN (WGAN) with weight clipping and WGAN with gradient penalty (WGAN-GP) where the norm of gradient of the critic is penalized with respect to its input. Following the emergence of multi-lepton anomalies at the LHC, we apply GANs for the generation of di-leptons final states in association with b-quarks at the LHC. A good agreement between the MC events and the WGAN-GP events is found for the observables selected in the study.


翻译:机器学习中的半监视器可用于寻找没有标记信号加背景区域的新物理学。 这极大地减少了在标准模型之外寻找信号时的模型依赖性。 这种方法显示了过度安装会产生假信号的缺点。 可以通过经常推论来使用玩具蒙特卡洛(MC)事件来估计相应的试验系数。 但是, 以完全检测器模拟为基础的MC事件是资源密集型的。 基因反转网络(GANs)可以用来模仿 MC 发电机。 GANs 是强大的基因化模型,但往往受到训练不稳定的影响。 我们从此展示了对GANs的审查。 我们主张使用瓦瑟斯坦GAN(WGAN), 其重量剪切, 并使用具有梯度的WGAN(WGAN-GP) 来估计相应的试验系数。 在LHC出现多 Lepton 异常后, 我们应用GANs 来生成与b- quarks相关的二 Lepton最后状态, 但却常常受到训练不稳定的影响。 我们主张使用Wasserstein GAN(WG) 和所选的LHCHA 之间的良好协议。

0
下载
关闭预览

相关内容

GANs最新进展,30页ppt,GANs: the story so far
专知会员服务
43+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
已删除
将门创投
4+阅读 · 2018年1月19日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
8+阅读 · 2019年2月15日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
已删除
将门创投
4+阅读 · 2018年1月19日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
Top
微信扫码咨询专知VIP会员