The self-adjoint, positive Markov operator defined by the P\'olya-Gamma Gibbs sampler (under a proper normal prior) is shown to be trace-class, which implies that all non-zero elements of its spectrum are eigenvalues. Consequently, the spectral gap is $1-\lambda_*$, where $\lambda_* \in [0,1)$ is the second largest eigenvalue. A method of constructing an asymptotically valid confidence interval for an upper bound on $\lambda_*$ is developed by adapting the classical Monte Carlo technique of Qin et al. (2019) to the P\'olya-Gamma Gibbs sampler. The results are illustrated using the German credit data. It is also shown that, in general, uniform ergodicity does not imply the trace-class property, nor does the trace-class property imply uniform ergodicity.
翻译:P\'olya-Gamma Gibbs取样员定义的自我连接、正Markov运算符(在正常之前)被显示为追踪级,这意味着其频谱中的所有非零元素都是egenvalus。因此,光谱差距为$- lambda ⁇ $, 其中$\lambda ⁇ \\ in [0,1] 是第二大egenvalu。一种对$\lambda ⁇ $的上界构建无效果的置信区间的方法是通过将Qin等人的Monte Carlo传统技术(2019年)改成P\'olya-Gamma Gibbbs采样器(2019年)来开发的。结果用德国的信用数据加以说明。还表明,一般来说,统一的ERGity并不表示追踪级属性,而追踪级属性也不意味着统一的ergodicity。