Estimating the shape of an elliptical distribution is a fundamental problem in statistics. One estimator for the shape matrix, Tyler's M-estimator, has been shown to have many appealing asymptotic properties. It performs well in numerical experiments and can be quickly computed in practice by a simple iterative procedure. Despite the many years the estimator has been studied in the statistics community, there was neither a tight non-asymptotic bound on the rate of the estimator nor a proof that the iterative procedure converges in polynomially many steps. Here we observe a surprising connection between Tyler's M-estimator and operator scaling, which has been intensively studied in recent years in part because of its connections to the Brascamp-Lieb inequality in analysis. We use this connection, together with novel results on quantum expanders, to show that Tyler's M-estimator has the optimal rate up to factors logarithmic in the dimension, and that in the generative model the iterative procedure has a linear convergence rate even without regularization.


翻译:估测椭圆分布的形状是统计中的一个根本问题。 形状矩阵的一个估计者, Tyler 的 M- 估计器, 已证明它有许多有吸引力的无药可依的特性。 它在数字实验中表现良好, 并且可以通过简单的迭接程序在实践上快速计算。 尽管统计界已经研究过这个估计器多年, 但没有严格的非无药可依地限制测量器的速率, 也没有证明迭接程序在多步之间会融合。 我们在这里观察到泰勒的M- 估计器和操作器的缩放之间有惊人的连接, 这一点近年来已经深入研究过, 部分原因是它与Brascamp- Lieb的不平等性在分析中存在联系。 我们使用这个连接, 加上量子扩张器的新结果, 以显示泰勒的M- 估计器的速率最符合维度的对数系数, 而在基因组化模型中, 迭接合程序有线性趋同率, 即使没有正规化。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
专知会员服务
51+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年11月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员