In this paper, we introduce PeerGAN, a generative adversarial network (GAN) solution to improve the stability of the generated samples and to mitigate mode collapse. Built upon the Vanilla GAN's two-player game between the discriminator $D_1$ and the generator $G$, we introduce a peer discriminator $D_2$ to the min-max game. Similar to previous work using two discriminators, the first role of both $D_1$, $D_2$ is to distinguish between generated samples and real ones, while the generator tries to generate high-quality samples that are able to fool both discriminators. Different from existing methods, we introduce another game between $D_1$ and $D_2$ to discourage their agreement and therefore increase the level of diversity of the generated samples. This property helps avoid early mode collapse by preventing $D_1$ and $D_2$ from converging too fast. We provide theoretical analysis for the equilibrium of the min-max game formed among $G, D_1, D_2$. We offer convergence behavior of PeerGAN as well as stability of the min-max game. It's worth mentioning that PeerGAN operates in the unsupervised setting, and the additional game between $D_1$ and $D_2$ does not need any label supervision. Experiments results on a synthetic dataset and on real-world image datasets (MNIST, Fashion MNIST, CIFAR-10, STL-10, CelebA, VGG) demonstrate that PeerGAN outperforms competitive baseline work in generating diverse and high-quality samples, while only introduces negligible computation cost.
翻译:在本文中, 我们引入了PeerGAN( PeerGAN), 这是一种基因对抗网络( GAN) 的解决方案, 以提高所制样本的稳定性, 并减轻模式崩溃。 在导师$D$1美元和发电机$G$$G$的 Vanilla GAN 两个玩家游戏中, 我们引入了同侪歧视者$2$2美元给最小体积游戏。 和以前使用两个导师的工作相似, 前者的作用是$1美元, $2美元, 首先是区分所制样本和真实样本, 而发电机试图生成高质量的样本, 能够愚弄双方的导师。 不同于现有方法, 我们引入了另一场游戏, $1美元和$D$2的游戏游戏游戏游戏游戏游戏游戏游戏游戏游戏, 因而提高了所生成样本的多样性。 这个属性有助于避免早期的模式崩溃, 防止$1美元和$D2美元从混凝固中产生过快。 我们仅对在G美元、 D_1、 D_2美元中形成的微数字游戏的平衡进行理论分析。 我们为PealGAN的趋契的合并行为, 在SERG 的游戏中, 10G 的计算中, 基数据中, 数据运行中, 也显示了比更低的游戏中, 10G1 的运行中, 。