Quantum mechanical effects have enabled the construction of cryptographic primitives that are impossible classically. For example, quantum copy-protection allows for a program to be encoded in a quantum state in such a way that the program can be evaluated, but not copied. Many of these cryptographic primitives are two-party protocols, where one party, Bob, has full quantum computational capabilities, and the other party, Alice, is only required to send random BB84 states to Bob. In this work, we show how such protocols can generically be converted to ones where Alice is fully classical, assuming that Bob cannot efficiently solve the LWE problem. In particular, this means that all communication between (classical) Alice and (quantum) Bob is classical, yet they can still make use of cryptographic primitives that would be impossible if both parties were classical. We apply this conversion procedure to obtain quantum cryptographic protocols with classical communication for unclonable encryption, copy-protection, computing on encrypted data, and verifiable blind delegated computation. The key technical ingredient for our result is a protocol for classically-instructed parallel remote state preparation of BB84 states. This is a multi-round protocol between (classical) Alice and (quantum polynomial-time) Bob that allows Alice to certify that Bob must have prepared $n$ uniformly random BB84 states (up to a change of basis on his space). Furthermore, Alice knows which specific BB84 states Bob has prepared, while Bob himself does not. Hence, the situation at the end of this protocol is (almost) equivalent to one where Alice sent $n$ random BB84 states to Bob. This allows us to replace the step of preparing and sending BB84 states in existing protocols by our remote-state preparation protocol in a generic and modular way.


翻译:量子机械效应使得无法建立古典的加密原始体。 例如, 量子拷贝保护允许将程序编码成量子状态, 使程序可以评估程序, 但不复制。 许多这种加密原始体是两方协议, 其中一方鲍勃拥有完全量计算能力, 而另一方爱丽丝只需要向鲍勃发送随机的 BB84 状态。 在这项工作中, 我们展示了如何将这类协议一般地转换为爱丽丝完全古典化, 假设鲍勃无法有效解决LWE问题。 特别是, 这意味着( 古典) Alice 和( Quantum) Bob 之间的所有通信都是古典的, 但是它们仍然可以使用两方的加密原始体协议, 如果双方都是古典的, 那么我们应用这种转换程序来获得量子加密协议, 用于无法加密的加密数据、 计算, 以及可核实的盲选的计算。 我们结果的关键技术成分是 经典的远程构建协议( 等值) 爱丽丝和( Qum) Bob) 鲍尔· 84 的平行 国家, 正在准备一个常规的B 基础, 将一个常规的版本的版本的版本的版本的版本的版本的版本的版本的版本, 开始。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年10月18日
Arxiv
0+阅读 · 2022年10月17日
VIP会员
相关主题
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员