Under suitable assumptions, the algorithms in [Lin, Tong, Quantum 2020] can estimate the ground state energy and prepare the ground state of a quantum Hamiltonian with near-optimal query complexities. However, this is based on a block encoding input model of the Hamiltonian, whose implementation is known to require a large resource overhead. We develop a tool called quantum eigenvalue transformation of unitary matrices with real polynomials (QET-U), which uses a controlled Hamiltonian evolution as the input model, a single ancilla qubit and no multi-qubit control operations, and is thus suitable for early fault-tolerant quantum devices. This leads to a simple quantum algorithm that outperforms all previous algorithms with a comparable circuit structure for estimating the ground state energy. For a class of quantum spin Hamiltonians, we propose a new method that exploits certain anti-commutation relations and further removes the need of implementing the controlled Hamiltonian evolution. Coupled with Trotter based approximation of the Hamiltonian evolution, the resulting algorithm can be very suitable for early fault-tolerant quantum devices. We demonstrate the performance of the algorithm using IBM Qiskit for the transverse field Ising model. If we are further allowed to use multi-qubit Toffoli gates, we can then implement amplitude amplification and a new binary amplitude estimation algorithm, which increases the circuit depth but decreases the total query complexity. The resulting algorithm saturates the near-optimal complexity for ground state preparation and energy estimating using a constant number of ancilla qubits (no more than 3).
翻译:在适当的假设下,[林、汤、泉2020年]的算法可以估计地面状态能量,并准备具有近于最佳查询复杂性的汉密尔顿仪量子的地面状态。然而,这是以汉密尔顿人块编码输入模型为基础的,据知,实施该模型需要大量的资源管理。我们开发了一个工具,称为量等值变换,配有真实的多元体(QET-U),它使用一种控制的汉密尔顿进化,作为输入模型,一个单一的安西拉qubit和没有多方位控制操作,因此适合早期的耐错度量子装置。这导致一个简单的量算法,它比以往所有具有可比电路结构的计算法都更完美。对于量级汉密尔密尔顿人来说,我们提出了一种新的方法,利用某些反调和进一步实施控制的汉密尔顿进进进进进进化。与Trotter比较,由此产生的算算法对于早期耐错度量器装置非常合适。我们用一个接近的精确度算算法的精确度计算方法,我们用了一个更接近的推算法的推算法,我们用了一个快速的推算法,我们用了一个新的变化的推算法,然后用了一个新的伸进进的推算法的推算法的推算法,我们用了一个新的平到了一个新的变动的变动的伸到一个比。