Social Honeypots are tools deployed in Online Social Networks (OSN) to attract malevolent activities performed by spammers and bots. To this end, their content is designed to be of maximum interest to malicious users. However, by choosing an appropriate content topic, this attractive mechanism could be extended to any OSN users, rather than only luring malicious actors. As a result, honeypots can be used to attract individuals interested in a wide range of topics, from sports and hobbies to more sensitive subjects like political views and conspiracies. With all these individuals gathered in one place, honeypot owners can conduct many analyses, from social to marketing studies. In this work, we introduce a novel concept of social honeypot for attracting OSN users interested in a generic target topic. We propose a framework based on fully-automated content generation strategies and engagement plans to mimic legit Instagram pages. To validate our framework, we created 21 self-managed social honeypots (i.e., pages) on Instagram, covering three topics, four content generation strategies, and three engaging plans. In nine weeks, our honeypots gathered a total of 753 followers, 5387 comments, and 15739 likes. These results demonstrate the validity of our approach, and through statistical analysis, we examine the characteristics of effective social honeypots.


翻译:社交蜜罐是在在线社交网络中部署的工具,用于吸引垃圾邮件和机器人执行的恶意活动。为此,它们的内容旨在对恶意用户最感兴趣。然而,通过选择适当的内容主题,这种吸引机制可以扩展到任何在线社交网络用户,而不仅仅是吸引恶意行为。因此,蜜罐可以用于吸引对多种主题感兴趣的个人,从体育和爱好到更敏感的主题,如政治观点和阴谋论。有了所有这些聚集在一起的个人,蜜罐所有者可以进行许多分析,从社会到市场研究。在这项工作中,我们介绍了一个新概念,即社交蜜罐,用于吸引对特定主题感兴趣的在线社交网络用户。我们提出了一个基于完全自动化的内容生成策略和参与计划的框架,以模仿合法的Instagram页面。为了验证我们的框架,我们在Instagram上创建了21个自我管理的社交蜜罐(即页面),涵盖三个主题、四种内容生成策略和三种引人入胜的计划。在九周内,我们的蜜罐聚集了753个关注者、5387 条评论和15739个赞。这些结果证明了我们的方法的有效性,并通过统计分析,我们探讨了有效的社交蜜罐的特征。

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
专知会员服务
42+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
27+阅读 · 2023年1月5日
Arxiv
49+阅读 · 2020年12月16日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
VIP会员
相关资讯
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员