Gait recognition is a promising video-based biometric for identifying individual walking patterns from a long distance. At present, most gait recognition methods use silhouette images to represent a person in each frame. However, silhouette images can lose fine-grained spatial information, and most papers do not regard how to obtain these silhouettes in complex scenes. Furthermore, silhouette images contain not only gait features but also other visual clues that can be recognized. Hence these approaches can not be considered as strict gait recognition. We leverage recent advances in human pose estimation to estimate robust skeleton poses directly from RGB images to bring back model-based gait recognition with a cleaner representation of gait. Thus, we propose GaitGraph that combines skeleton poses with Graph Convolutional Network (GCN) to obtain a modern model-based approach for gait recognition. The main advantages are a cleaner, more elegant extraction of the gait features and the ability to incorporate powerful spatio-temporal modeling using GCN. Experiments on the popular CASIA-B gait dataset show that our method archives state-of-the-art performance in model-based gait recognition. The code and models are publicly available.
翻译:Gait 识别是一个很有希望的视频生物鉴别法,用来从远处识别个人行走模式。目前,大多数行为识别方法都使用光影图像在每个框中代表一个人。然而,光影图像可能会丢失细微的空间信息,而大多数文件并不考虑如何在复杂场景中获取这些光影。此外,光影图像不仅包含运动特征,而且还包含其他可以识别的视觉线索。因此,这些方法不能被视为严格的动作识别。我们利用最近人类姿势估计的进展,直接估计RGB图像的坚固骨骼构成,将基于模型的动作识别与更清洁的动作表示。因此,我们提议GaitGraph将骨架配置与图形革命网络(GCN)相结合,以获得现代模型为基础的编程识别方法。主要优点是更清洁、更优雅地提取网形特征,以及能够利用GCN纳入强大的时尚模型。我们对流行的CASIA-B视频数据集进行实验,以更清洁的动作表示我们的方法模型是公开的模型。