This paper presents a new synthesis-based approach for batch image processing. Unlike existing tools that can only apply global edits to the entire image, our method can apply fine-grained edits to individual objects within the image. For example, our method can selectively blur or crop specific objects that have a certain property. To facilitate such fine-grained image editing tasks, we propose a neuro-symbolic domain-specific language (DSL) that combines pre-trained neural networks for image classification with other language constructs that enable symbolic reasoning. Our method can automatically learn programs in this DSL from user demonstrations by utilizing a novel synthesis algorithm. We have implemented the proposed technique in a tool called ImageEye and evaluated it on 50 image editing tasks. Our evaluation shows that ImageEye is able to automate 96% of these tasks.
翻译:本文提出了一种新的基于合成的批量图像处理方法。与现有的工具只能对整个图像进行全局编辑不同,我们的方法可以对图像中的单个对象应用精细的编辑。例如,我们的方法可以选择性地模糊或裁剪具有特定属性的特定对象。为了便于进行这种精细的图像编辑任务,我们提出了一种神经符号领域特定语言(DSL),将预训练的用于图像分类的神经网络与其他语言构造相结合,以实现符号推理。我们的方法可以通过利用一种新颖的合成算法从用户演示中自动学习这个DSL中的程序。我们将所提出的技术实现在一个名为ImageEye的工具中, 并对50个图像编辑任务进行了评估。我们的评估表明,ImageEye能够自动化96%以上的任务。