Although automatic speech recognition (ASR) systems achieved significantly improvements in recent years, spoken language recognition error occurs which can be easily spotted by human beings. Various language modeling techniques have been developed on post recognition tasks like semantic correction. In this paper, we propose a Transformer based semantic correction method with pretrained BART initialization, Experiments on 10000 hours Mandarin speech dataset show that character error rate (CER) can be effectively reduced by 21.7% relatively compared to our baseline ASR system. Expert evaluation demonstrates that actual improvement of our model surpasses what CER indicates.


翻译:虽然近年来自动语音识别(ASR)系统取得了显著改进,但口语识别错误发生,人类很容易发现。在语义校正等识别后任务方面,已经开发了各种语言模型技术。在本文件中,我们提出了基于变换器的语义纠正方法,预先培训了BART初始化,在10000小时的普通话语音数据集实验表明,与我们基线的ASR系统相比,字符错误率(CER)可有效降低21.7%。专家评估表明,我们模型的实际改进超过了CER所显示的。

1
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Top
微信扫码咨询专知VIP会员