Emerging with the support of computing and communications technologies, Metaverse is expected to bring users unprecedented service experiences. However, the increase in the number of Metaverse users places a heavy demand on network resources, especially for Metaverse services that are based on graphical extended reality and require rendering a plethora of virtual objects. To make efficient use of network resources and improve the Quality-of-Experience (QoE), we design an attention-aware network resource allocation scheme to achieve customized Metaverse services. The aim is to allocate more network resources to virtual objects in which users are more interested. We first discuss several key techniques related to Metaverse services, including QoE analysis, eye-tracking, and remote rendering. We then review existing datasets and propose the user-object-attention level (UOAL) dataset that contains the ground truth attention of 30 users to 96 objects in 1,000 images. A tutorial on how to use UOAL is presented. With the help of UOAL, we propose an attention-aware network resource allocation algorithm that has two steps, i.e., attention prediction and QoE maximization. Specially, we provide an overview of the designs of two types of attention prediction methods, i.e., interest-aware and time-aware prediction. By using the predicted user-object-attention values, network resources such as the rendering capacity of edge devices can be allocated optimally to maximize the QoE. Finally, we propose promising research directions related to Metaverse services.
翻译:在计算机和通信技术的支持下,预计Meteve将带来用户前所未有的服务经验,然而,Meteve用户数量的增加对网络资源提出了大量的需求,特别是对基于图形扩展现实和需要大量虚拟物体的Metverse服务的需求,为了有效利用网络资源,提高经验质量(QoE),我们设计了一个关注网络资源分配计划,以实现定制化的Metevy服务。目的是向用户更感兴趣的虚拟对象分配更多的网络资源。我们首先讨论与Metverse服务有关的若干关键技术,包括QoE分析、眼睛跟踪和远程传输。我们随后审查现有的数据集,并提出用户目标注意水平(UAL)数据,其中包含30个用户对1 000图像中的96个目标的地面真知灼见。在UOAL的帮助下,我们提议一个关注网络资源配置的注意度配置算法,即关注预测值和预测速度预测值的两个步骤。我们特别提供用户预测能力的最后预测方法。我们利用预测的预测值、预测值的预测值、预测值最终值,提供对用户预测值的预测值的预测值的预测。