Lifelong SLAM considers long-term operation of a robot where already mapped locations are revisited many times in changing environments. As a result, traditional graph-based SLAM approaches eventually become extremely slow due to the continuous growth of the graph and the loss of sparsity. Both problems can be addressed by a graph pruning algorithm. It carefully removes vertices and edges to keep the graph size reasonable while preserving the information needed to provide good SLAM results. We propose a novel method that considers geometric criteria for choosing the vertices to be pruned. It is efficient, easy to implement, and leads to a graph with evenly spread vertices that remain part of the robot trajectory. Furthermore, we present a novel approach of marginalization that is more robust to wrong loop closures than existing methods. The proposed algorithm is evaluated on two publicly available real-world long-term datasets and compared to the unpruned case as well as ground truth. We show that even on a long dataset (25h), our approach manages to keep the graph sparse and the speed high while still providing good accuracy (40 times speed up, 6cm map error compared to unpruned case).


翻译:长期 SLAM 认为一个机器人的长期操作, 该机器人已经绘制过的位置在变化的环境中多次被重新审视。 结果, 传统的基于图形的 SLAM 方法最终会由于图形的不断增长和松散性损失而变得极其缓慢。 这两个问题都可以通过一个图形调整算法来解决。 它谨慎地去除脊椎和边缘, 以使图形大小保持合理, 同时保留提供良好 SLAM 结果所需的信息。 我们提出了一个新颖的方法, 它将考虑选择要旋转的顶点的几何标准。 它非常高效、 容易执行, 并导致一个分布均匀的顶点的图表, 仍然是机器人轨道的一部分。 此外, 我们提出了一种新的边缘化方法, 比现有方法更能应对错误的环关闭。 拟议的算法是根据两种公开存在的真实世界长期数据集来评估的, 并且与未标定的病例和地面真相进行比较。 我们显示, 即使在一个长期的数据集( 25h), 我们的方法仍然能够保持图表的稀少和速度, 同时仍然提供良好的精确度( 40 次速度, 和 6cm 错误 ) 。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
ICRA 2019 论文速览 | 传统SLAM、三维视觉算法进展
计算机视觉life
50+阅读 · 2019年7月16日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
已删除
生物探索
3+阅读 · 2018年2月10日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
9+阅读 · 2020年10月29日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关VIP内容
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
ICRA 2019 论文速览 | 传统SLAM、三维视觉算法进展
计算机视觉life
50+阅读 · 2019年7月16日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
已删除
生物探索
3+阅读 · 2018年2月10日
Top
微信扫码咨询专知VIP会员