In this paper, we propose a multiphysics finite element method for a quasi-static thermo-poroelasticity model with a nonlinear convective transport term. To design some stable numerical methods and reveal the multi-physical processes of deformation, diffusion and heat, we introduce three new variables to reformulate the original model into a fluid coupled problem. Then, we introduce an Newton's iterative algorithm by replacing the convective transport term with $\nabla T^{i}\cdot(\bm{K}\nabla p^{i-1})$, $\nabla T^{i-1}\cdot(\bm{K}\nabla p^{i})$ and $\nabla T^{i-1}\cdot(\bm{K}\nabla p^{i-1})$, and apply the Banach fixed point theorem to prove the convergence of the proposed method. Then, we propose a multiphysics finite element method with Newton's iterative algorithm, which is equivalent to a stabilized method, can effectively overcome the numerical oscillation caused by the nonlinear thermal convection term. Also, we prove that the fully discrete multiphysics finite element method has an optimal convergence order. Finally, we draw conclusions to summarize the main results of this paper.
翻译:暂无翻译