Kernel methods, being supported by a well-developed theory and coming with efficient algorithms, are among the most popular and successful machine learning techniques. From a mathematical point of view, these methods rest on the concept of kernels and function spaces generated by kernels, so called reproducing kernel Hilbert spaces. Motivated by recent developments of learning approaches in the context of interacting particle systems, we investigate kernel methods acting on data with many measurement variables. We show the rigorous mean field limit of kernels and provide a detailed analysis of the limiting reproducing kernel Hilbert space. Furthermore, several examples of kernels, that allow a rigorous mean field limit, are presented.
翻译:内核方法得到发展完善的理论的支持,并具有高效的算法,是最受欢迎和最成功的机器学习技术之一。从数学角度看,这些方法依赖于内核产生的内核和功能空间的概念,即所谓的内核再生的内核Hilbert空间。在互动粒子系统背景下学习方法的最新发展推动下,我们调查内核方法与许多测量变量一起处理数据的方法。我们展示了内核的严格中平均值外限,并对限制再生产内核的Hilbert空间进行了详细分析。此外,还介绍了若干允许严格中度外限的内核实例。</s>