We consider the classical online bipartite matching problem in the probe-commit model. In this problem, when an online vertex arrives, its edges must be probed to determine if they exist, based on known edge probabilities. A probing algorithm must respect commitment, meaning that if a probed edge exists, it must be used in the matching. Additionally, each online vertex has a patience constraint which limits the number of probes that can be made to an online vertex's adjacent edges. We introduce a new configuration linear program (LP) which we prove is a relaxation of an optimal offline probing algorithm. Using this LP, we establish the following competitive ratios which depend on the model used to generate the instance graph, and the arrival order of its online vertices: - In the worst-case instance model, an optimal $1/e$ ratio when the vertices arrive in uniformly at random (u.a.r.) order. - In the known independently distributed (i.d.) instance model, an optimal $1/2$ ratio when the vertices arrive in adversarial order, and a $1-1/e$ ratio when the vertices arrive in u.a.r. order. The latter two results improve upon the previous best competitive ratio of $0.46$ due to Brubach et al. (Algorithmica 2020), which only held in the more restricted known i.i.d. (independent and identically distributed) instance model. Our $1-1/e$-competitive algorithm matches the best known result for the prophet secretary matching problem due to Ehsani et al. (SODA 2018). Our algorithm is efficient and implies a $1-1/e$ approximation ratio for the special case when the graph is known. This is the offline stochastic matching problem, and we improve upon the $0.42$ approximation ratio for one-sided patience due to Pollner et al. (EC 2022), while also generalizing the $1-1/e$ approximation ratio for unbounded patience due to Gamlath et al. (SODA 2019).


翻译:我们考虑在探测- 承诺模式中, 经典的在线双叶双叶匹配问题。 在这个问题中, 当在线顶端到达时, 必须根据其已知的边缘概率, 对其边缘进行检测以确定它们是否存在。 测试算法必须尊重承诺, 也就是说如果发现边缘存在, 就必须在匹配中使用它。 此外, 每个在线顶端都有一个耐性限制, 从而限制可以做到在线顶端的 20 个 Overtex 相邻边缘的探测器数量。 我们引入一个新的配置直线比( LP), 我们证明这是一个最佳的离线算法。 使用这个 LP, 我们建立以下的竞争比率, 取决于用来生成实例图的模型, 意味着如果检测边缘存在, 则必须在匹配时使用。 最坏的情况模型, 当顶端温度以随机( u. a. r. ) 排序时, 最佳的 美元比值将限制为 20- 。 ( 已知的直径直线( 和直径直线 ) (i/ d) 模型, 当脊椎比以正对正对正对正对正对正的,, 最高的汇率的汇率则以正对正对正, 。</s>

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月8日
Arxiv
0+阅读 · 2023年5月8日
Arxiv
0+阅读 · 2023年5月5日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员