The problem of sparsifying a graph or a hypergraph while approximately preserving its cut structure has been extensively studied and has many applications. In a seminal work, Bencz\'ur and Karger (1996) showed that given any $n$-vertex undirected weighted graph $G$ and a parameter $\varepsilon \in (0,1)$, there is a near-linear time algorithm that outputs a weighted subgraph $G'$ of $G$ of size $\tilde{O}(n/\varepsilon^2)$ such that the weight of every cut in $G$ is preserved to within a $(1 \pm \varepsilon)$-factor in $G'$. The graph $G'$ is referred to as a {\em $(1 \pm \varepsilon)$-approximate cut sparsifier} of $G$. Subsequent recent work has obtained a similar result for the more general problem of hypergraph cut sparsifiers. However, all known sparsification algorithms require $\Omega(n + m)$ time where $n$ denotes the number of vertices and $m$ denotes the number of hyperedges in the hypergraph. Since $m$ can be exponentially large in $n$, a natural question is if it is possible to create a hypergraph cut sparsifier in time polynomial in $n$, {\em independent of the number of edges}. We resolve this question in the affirmative, giving the first sublinear time algorithm for this problem, given appropriate query access to the hypergraph.


翻译:平面图或高压图在大约保存其剪切结构的同时加空的问题已经得到广泛研究,并有许多应用。在一项开创性工作中,Bencz\\'ur和Karger(1996年)表明,如果有任何美元外向加权加权图形G$和参数$varepsilon $(0,1美元),则近线时间算法输出一个大小为$G$G的加权子图$(美元){O}(n/\varepsilon>2)$(美元),因此每切一G$的重量都保留在$(1\ pm\\\ varepsilon) 和$G$(美元)的范围内。G$G$(美元)被称作$(1\ pm 问题)- parepsilon(美元) 。随后的工作也取得了类似的结果,因为更普遍的高比例的精度精度精度精度精度硬度压缩器问题。然而,所有已知的精度计算法的精度计算值均需要$(n) oqireqal $(美元) leglearregratialalalalalalalalal) a time.

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年1月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月22日
Query Embedding on Hyper-relational Knowledge Graphs
Arxiv
4+阅读 · 2021年6月17日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年1月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员